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Abstract

Linear and non-linear transient responses of a typical hydraulic engine mount are analytically and
experimentally studied in this paper. First, a lumped parameter linear model is used to approximate the
typical step response and to suggest parameters that must be experimentally determined. Various
configurations as related to inertia track and decoupler are analyzed. Two bench experiments are
constructed for the identification of non-linear compliances and resistances. One of the main non-linear
characteristics, however, comes from the decoupler mechanism. To accurately predict the time events of the
decoupler opening and closing, an equivalent viscous damper model is employed along with a multi-staged
switching mechanism. Additionally, non-linear behavior arising due to the vacuum formation in the top
chamber is studied by defining a bi-linear asymmetric stiffness curve. New transient experiments are
conducted on an elastomer test system, and measured transmitted force and top chamber pressure signals
are analyzed. Results of the proposed simulation model match well with measured responses when step up,
step down and triangular waveforms are applied. Areas for future research are identified.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

Hydraulic mounts are designed and tuned to provide amplitude-sensitive and spectrally varying
properties [1]. Such devices are increasingly being employed in many ground vehicles to isolate
engines and transmissions. The performances of such hydraulic mounts are typically measured on
a steady state basis using the sinusoidal non-resonant-type test methods [2] and regularly
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employed for product design and quality control. Conversely, their transient characteristics are
poorly understood, and the relevant simulation methods and experimental techniques are not
readily available. Therefore, the chief objective of this article is to develop linear and non-linear
models that may be utilized to design, specify and diagnose the transient characteristics arising
due to many vehicle conditions such as travel on bumpy roads, abrupt accelerations or
decelerations, braking, and cornering. In a recent paper, Nessler et al. [3] developed a roll down
methodology to predict the driver’s seat track response to garage shift events. They concluded
that the response of a garage shift event at the seat track mounting is due primarily to vibration
transmitted through the power train mounts. We will also propose new transient experiments and
compare prediction and measurements for selected transients.

1.2. Literature review

There is a substantial body of literature on the steady state (sinusoidal) behavior of hydraulic
mounts. Singh et al. [4] provide a comprehensive review of previous research on passive mounts.
Further, they [4] developed a linear lumped parameter model, which after certain assumptions
results in a simple transfer function model with second order numerator and denominator
dynamics. Parametric design studies show the effects of top chamber compliance and inertia track
geometry. The continuation of this work, presented in Ref. [5], resulted in a non-linear model that
emphasizes the non-linearities due to decoupler and inertia track. However, only the kinematic
switching mechanism was defined. Non-linear system parameters used in the model must be
measured, as explained in Ref. [2]. Kim and Singh [5] also proposed an adaptive mount system
that implements an on–off damping control mode. In Ref. [5], the performance of a two-degree-
of-freedom hydraulic mounting system was compared with that of elastomeric mount system for
base excited impulse and step displacement inputs to the mount.

Colgate et al. [6] suggested two linear, frequency domain models to distinguish between the
small (o0.5mm) and large (>0.5mm) amplitudes of excitation. Their non-linear model, by
means of piecewise and equivalent linearization, assumed that a squeeze film produces a damping
force as the decoupler bottoms out. The steady state response to a composite excitation with two
sinusoids of different amplitudes and frequencies was also studied. Royston and Singh calculate
the vibratory power flow through a hydraulic engine mount into a resonant receiver by employing
a dual domain strategy based on the Galerkin’s method [7].

Based on the existing literature, it is clear that virtually no efforts have been made to analyze
the transient behavior, with the exception of Kim and Singh [5] who studied mount in the context
of a simplified model. Likewise, no experimental methods or data are available to the best of our
knowledge [8,9].

1.3. Objectives and example case

The main objective of this study is to develop linear and non-linear models with emphasis on
time domain issues, and to validate such models by comparing simulation with transient
experiments. Since the mount exhibits multiple non-linearities, characterization of such a system
requires a combined experimental and analytical strategy. In particular, our research focuses on
the non-linear characteristics introduced by the vacuum in the top chamber, inertia track
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dynamics, and the decoupler switching mechanism. New dynamic characterization tests are also
conducted on an elastomer test system under step, triangular and sawtooth displacement
waveforms.

The example case is schematically shown in Fig. 1. In practice, three or four mounts are used to
support engines and transmissions, out of which one is typically the hydraulic mount. The device
is mounted to the engine through the top mounting studs (1) and to the chassis through the
bottom mounting studs (2). Metal inserts (3, 6) are molded into the elastomeric element (4) so that
the compression and shear deformations of the elastomeric element provide stiffness to support
the static engine weight. The pin (5) acts as a stopper for preventing excessive tension in the top
chamber for very large tensile displacements. The top (7) and bottom (8) chambers are filled with
anti-freeze and water mixture. Upon the compression of the top chamber, the liquid is forced to
flow through the two fluid channels in the orifice plate (10). This consists of an inertia track (11),
which is a long, narrow channel to provide the fluid damping, and a decoupler (12) with a wider
orifice along with a free floating elastomeric disk. The flexible rubber diaphragm (9) acts like an
accumulator as the fluid flows from the top to the bottom chamber. The air breather (13) allows
the air to escape from the base plate (14). The most critical component is the orifice plate (10)
since minor changes in its geometry and flow conditions could influence dynamic behavior in a
significant manner. Even though only one mount is examined, various sub-sets are developed by
modifying the internal components.
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2. Analytical formulation and system parameters

2.1. Lumped parameter model

The hydraulic mount is modelled by lumping the fluid system into several control volumes as
shown in Fig. 2. Our discretization strategy is consistent with low frequency oriented models that
have been utilized before [4,10]. The system parameters are either calculated using theoretical
formulas or experimentally measured. They include the top (#1) and bottom (#2) chamber fluid
compliances (C1 and C2), elastomeric element stiffness (kr) and damping (br), inertia track
inertance (Ii), fluid resistance (Ri), and decoupler resistance (Rd). Through experimentation, it is
shown that C1, C2, Ri, and Rd have non-linear characteristics. However, the largest contribution
to the non-linear characteristics of the mount seems to come from the switching mechanism of the
decoupler. It acts like an on–off valve since it is actuated by the pressure difference (p1�p2)
between the top and bottom chambers. The concept of the hydraulic mount is illustrated in Fig. 3
where u(x,t) is the hydraulic reaction force.

The momentum and continuity equations yield the following equations; refer to Refs. [4,10] for
details:

qiðtÞ þ qdðtÞ ¼ Ap ’xðtÞ � C1ðp1Þ ’p1ðtÞ; ð1Þ

�qiðtÞ � qdðtÞ ¼ C2ðp2Þ ’p2ðtÞ; ð2Þ

FT ðtÞ ¼ br ’xðtÞ þ krxðtÞ þ Apð %p � p1ðtÞÞ; ð3Þ

where qi, qd, p1, p2, %p; x, Ap, and FT denote the flow rate through inertia track, flow rate through
decoupler, top chamber pressure, bottom chamber pressure, pressure at static equilibrium
condition, displacement excitation, equivalent piston area, and transmitted force, respectively.
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Engine mounts always operate at a given preload (Fm), which can be compressive or tensile
depending upon the application. Typical preloads range from about 1200 to 2400N for
automotive applications. The dynamic excitation in the standard mount tests is usually specified
by a harmonic displacement, x(t)=X sin(2pft), where the amplitude X ranges from 0.05 to 1.5mm
and the frequency f in Hz depends on the application [11]. The output of interest is the force
transmitted to the base, FT(t)=|FT(t)| sin(2pft+f). In such tests, super- and sub-harmonics of f are
ignored [8,11]. Unlike the conventional elastomeric mount, FT(t) in a hydraulic mount includes
contribution from both elastomeric and fluid elements. While the elastomeric element may be
considered linear, the fluid system could behave in a linear or non-linear manner depending upon
the internal configuration of the mount and the amplitude of the excitation.

The orifice plate positioned between the top and bottom chambers controls the fluid system
characteristics. As shown in Fig. 4, the top orifice plate holds the decoupler and provides the fluid
channel for the inertia track. The bottom orifice plate provides the entrance/exit passages for the
decoupler and inertia track as well as a mechanism for closing the top orifice plate so that no
leaking occurs. Measured dimensions are listed in Table 1.

2.2. Inertia track

The inertia track of Fig. 4 is long and spiral, with a small cross-sectional area (Ai) channel. Due
to its geometry, inertia track has high resistance (Ri) and inertance (Ii), which result in sufficiently
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high damping needed to control engine resonances. The inertia track is modelled via a first order
fluid system differential equation, where the fluid compliance term is neglected. Eq. (4) is non-
linear as the Ri term depends on fluid variables:

Ii ’qiðtÞ þ RiðDp12; qiÞqiðtÞ ¼ p2ðtÞ � p1ðtÞ ¼ Dp12ðtÞ: ð4Þ

The Ii term plays an important role but its measurement is very difficult [6].
Furthermore, an accurate estimate based on partial differential equations would require a

complicated and lengthy analysis [10]. In an effort to characterize Ii, the flow through the inertia
track can be assumed to be one-dimensional and steady flow. The inertia track is assumed to be a
straight pipe of length li and area Ai. The inertance is Ii=rli/Ai where r is the fluid density. Note
that the effective length (li) could be between 1.0 and 1.33 of the geometric length [10].

The fluid resistance of a channel is the slope of the plot between pressure drop across a channel
and the resulting flow rate through it. In general, the relation between steady state pressure drop
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Table 1

Hydraulic mount parameters

(a) Measured orifice plate geometry

Inertia track:

Length (li)=23.6 cm, cross-sectional area (Ai)=84mm2

Decoupler:

Diameter (dd)=5 cm, area (Ad)=1.96e-3m2, gap (dd)=1.1mm,

thickness (td)=4mm, holes area (Hd)=1.22e-4m2

(b) Paramerters of the linear model

br=0.5N s/mm, kr=320N/mm, C1=2.5e-11m5/N, C2=2.4e-9m5/N,

Ii=2.8e6 kg/m4, Ri=1.4e8N s/m5, Rd=1.4e7N s/m5
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(Dp12) and steady flow rate (qi) in a pipe is non-linear. Measured results of Fig. 5 verify this for the
inertia track. The Dp12 is determined to be a function qi

2 and the curves for water and anti-freeze
mixture are identical. Assuming laminar flow in a capillary tube, the linearized resistance can be
calculated using the following formula [10]: Ri=128mli/pd i

4 where m, li and di denote the fluid
viscosity, length, and hydraulic diameter. Table 2 shows that this formula underestimates the
resistance. This is expected since it neglects the end effects and pressure losses due to cornering.
The non-linear relationship between qi and Dp12 is given by the sharp edge orifice formula as
follows: qi ¼ CdAi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dp12=r

p
; where Cd is the coefficient of discharge. In our work, Ri is

determined via a bench experiment [2]. Utilizing a centrifugal pump, steady state flow is
generated, and circulated through the inertia track only. To avoid any leakage or bypass, the
inertia track fixture is sealed using silicone and is clamped to the working table; the decoupler is
blocked using epoxy. The volumetric flow rate qi is measured using an electromagnetic flow meter,
whereas the pressure difference Dp12 between the inlet and the outlet of the fixture is measured
using a differential pressure transducer. Assuming turbulent flow for a sharp edge orifice, the ideal
value of Cd=0.61 can be used as a good approximation [10]. Fig. 5 shows measured Dp12 versus qi

curves that are used to find the results of Table 2. From Fig. 5 it can be seen that the plot is very
close to a quadratic relationship. A quadratic curve fit for these measured results gives a fit of
99%. The non-linear formulation based on sharp-edge orifice formula matches with the curve fit
plot with a coefficient with the same order of magnitude. However, the linearized coefficient from
the curve fit and capillary tube differs by one order of magnitude (Table 2). So the second order
(quadratic) curve fit is taken as the resistance equation.
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Table 2

Predicted and measured inertia track resistance Ri

Predicted Capillary tube formula (Eqs. (2)–(6)) Ri=8.65e6N s/m5

Sharp-edge orifice formula (Eqs. (2)–(7)) Ri=1.90e11qi Ns/m5

Measured Linearization (at qi=1e-4m3/s) Ri=3.45e7N s/m5

Second order poly-fit Ri=3.45e11qi Ns/m5
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2.3. Decoupler

As illustrated in Fig. 6, the decoupler contains a thin rubber disk of diameter Dd and thickness
td. The disk freely moves between the top and bottom orifice plates where dd is the net decoupler
gap. In our mount, seven small holes of diameter dd expose the decoupler to the top and bottom
chambers. To simplify our analysis, we eliminate the decoupler mechanism and allow the flow to
take place only through the inertia track. To do this experimentally, the decoupler is fixed to the
orifice plate using hard epoxy so that the flow through the decoupler qd is blocked. The adhesive
material must be sufficiently rigid so as not to introduce any additional compliance.

For the case of a free floating decoupler as shown in Fig. 6, the fluid flow is controlled by the
decoupler switching mechanism, which couples or decouples the inertia track. When the disk
floats in the middle of the gap, it will provide little fluid resistance Rd when compared with Ri. On
the other hand, when the disk is at the top or at the bottom, qd is zero, and thus the fluid can only
flow through the inertia track. A linear model of the decoupler is given by a first order differential
Eq. (5) where bv and Ad denote the viscous damping coefficient and cross-sectional area of the
decoupler gap. Further, md and xd represent the disk mass and displacement of the decoupler:

md .xdðtÞ þ bv ’xdðtÞ ¼ Ad ½p2ðtÞ � p1ðtÞ�; ’xdðtÞ ¼
qdðtÞ
Ad

: ð5a2bÞ

Experimentally, the dynamics of decoupler is studied by installing a pressure transducer in the top
chamber. The closing and opening events of the decoupler can be clearly observed in the top
chamber pressure p1(t).

2.4. Elastomeric element

In a hydraulic mount, the role of the elastomeric element is mostly to support the static load,
and to provide compliant chambers to contain the fluid. The rubber component is modelled using
the Voigt’s model, i.e., via linear spring (kr) and damping (br) elements in parallel. Note that kr

and br can be determined with a dynamic characterization test on the MTS system when the fluid
is drained out from the mount, and by removing the bottom chamber so as not have any air

ARTICLE IN PRESS

Top view

Cd

Cd

dd
Dd

td

�d1

�d2

�d = �d1 + �d2

Side view

Fig. 6. Schematic of the decoupler.

H. Adiguna et al. / Journal of Sound and Vibration 268 (2003) 217–248224



entrainment effect. Compared to a typical hydraulic mount, the dynamic stiffness magnitude and
phase values of the rubber element are low and virtually invariant at lower frequencies [5].

2.5. Chamber compliances

Linear fluid compliance is defined by C=DV/Dp where DV is the volume decrease and Dp is the
pressure applied about an operating point. For a non-linear element, the p–V curve must be
measured with a bench experiment [2], and the linearized compliance can be evaluated about an
operating point. Unlike Kim and Singh [2], we estimate the compliance by placing the top
chamber under a preload Fm. Such a load affects the mount in two ways. First, it affects the
chamber pressure operating point ð %pÞ about which the non-linear compliance is estimated.
Depending on the severity of the non-linearity the location of the operating point will effect the
dynamic stiffness. Second, it determines the mean fluid pressure pm, which affects the behavior of
entire fluid system. Kim [2] assumed that pm is the same as the static pressure %p: In our study, we
measured the static pressure as function of preload. Notice that since the bottom chamber is very
compliant, the fluid pressure is virtually equal to the atmospheric pressure pa when the preload is
less than 1000N, as shown in Fig. 7. The upper chamber pressure does not build up because the
lower compliant chamber accommodates the fluid displaced very easily because of high
compliance of lower chamber.

For the top chamber, the test is conducted under 0, 800 and 1200N preloads. This static force
was applied by the MTS system under manual static control [11]. The test results (Table 3) show
that the C1 value with 800 or 1200N preload is much smaller than the one with zero preload.
From simulations, it is seen that the dynamic stiffness predictions match measurements very well
when C1 is from 2e-11 to 3e-11m5/N. Therefore, a nominal value of 2.5m5/N is used for
simulation. Fig. 8(b) shows that the bottom chamber compliance is quite non-linear and it exhibits
some hysteresis due to loading and unloading. One may either linearize the curve about an
operating point or curve fit it using a polynomial model, which in this case a third order fit is
found to be sufficient. Also, note that p2 typically stays almost constant due to a very compliant
rubber diaphragm. Thus, the linearization yields a good approximation for C2.
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2.6. Vacuum phenomenon

A certain volume of gas can been assumed to be dissolved in the fluid but it comes out under
reduced pressure. Kim and Singh [2] used the ideal gas law to determine a theoretical p–V
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Table 3

Measured chamber compliance results

(a) Top chamber compliance

Above pa Fm=0N C1=7.29e-11m5/N

Fm=�800N C1=1.05e-11m5/N

Fm=�1200N C1=1.09e-11m5/N

Below pa C1=�7e-45 p7
1+2.5e-11

(b) Bottom chamber compliance

Linearization C2=2.4e-9m5/N

Third order polynomial-fit C2=1.51e-18p2
3�6.82e-14p2

2+3.13e-9p2+5.19e-6
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relationship for the vacuum-like conditions. Since it is not easy to determine the amount of pre-
dissolved gas, we propose to analyze the measured steady state dynamic results to determine the
p–V relationship. Intuitively, it may be said that vacuum formation in the top chamber results in
an increase in C1. The net dynamic stiffness characteristics of the mount are then given by the
corresponding stiffness K1 under compression (when p1>pa) and KV for expansion (when p1opa)
where pa is the atmospheric pressure. The mount should thus behave as a non-linear system with a
bi-linear stiffness curve as shown in Fig. 9(a). The corresponding pressure p1(t) should distort the
pressure waveform below pa. The level of distortion may be related to the relative strengths of K1

and Kv as shown in Fig. 9(b). The stiffness K1 for a compressive load has been estimated by a
bench experiment and Kv is estimated based on the analysis of pressure waveform distortion.
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Assume a piecewise linear system with stiffnesses K1 and Kv as shown in Fig. 9(a). Consider the
compressive compliance as unity since this is known from the bench experiment. Dynamic
pressure amplitudes corresponding to vacuum and normal modes of operation, respectively, are

p0v
p01

¼
Cv

C1
¼

K1

Kv

: ð6Þ

From this relationship, the compliance under vacuum conditions Cv can be estimated. Such an
analysis is done with the assumption that a change in stiffness from K1 to Kv takes place in a
discontinuous manner. In reality, the slope changes between the two states are less abrupt, and the
transition takes place virtually instantaneously. This gradual change shows up in the measured p1

waveform where no discontinuity is seen. In attempting to estimate Cv, one must also assume that
the change in volume under the dynamic displacement excitation is the same as observed under
static or quasi-static displacements. The resulting p–V relationship is given by the following
empirical equation:

dV

dp
¼ apn þ b: ð7Þ

In our analysis, the polytropic coefficient n is found to range from 12 to 30. The coefficient a is
about 10�60, whereas b is the slope of the p–V curve given at the operating point p1=pa. The small
value of a in Eq. (7) points to a very sharp but continuous change in the stiffness (compliance)
regime. These values were utilized for parametric studies, which finally yield a suitable value of n

from 7 to 10 (Table 3). The governing p–V curves are then obtained for both chambers as shown
in Fig. 8.

3. Linear lumped model

The governing equations developed in the last section can be linearized with certain
assumptions [4]. For example, C1 and C2 are assumed to be constant over the range of
operation, and only a linear Ri is considered. The decoupler (#d), as shown in Fig. 2, is modelled
as a short length orifice, whose governing equation is the same as the inertia track (#i), as shown
in Fig. 2, but with a lower resistance Rd and its inertance is ignored. The baseline parameters of
the linear model are shown in Table 1. The governing equations are then defined as

qiðtÞ þ qdðtÞ ¼ Ap ’xðtÞ � C1 ’p1ðtÞ; ð8Þ

�qiðtÞ � qdðtÞ ¼ C2 ’p2ðtÞ; ð9Þ

FT ðtÞ ¼ br ’xðtÞ þ krxðtÞ þ Apð %p � p1ðtÞÞ; ð10Þ

Ii ’qiðtÞ þ RiqiðtÞ ¼ p2ðtÞ � p1ðtÞ; ð11Þ

RdqdðtÞ ¼ p2ðtÞ � p1ðtÞ: ð12Þ

Utilizing Eqs. (8)–(12), the dynamic stiffness (in Laplace domain s) can be defined by the
following transfer function, whose coefficients are related to the linearized model parameters [4].
For a free decoupler mount, we obtain the third order in the numerator and the second order in
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the denominator:

K32ðsÞ ¼
FT ðsÞ
xðsÞ

¼
a3s3 þ a2s2 þ a1s þ a0

b2s2 þ b1s þ b0

; ð13a2fÞ

where

a3 ¼ brC1C2RdIi; a2 ¼ C1C2RdðbrRi þ krIiÞ þ brIiðC1 þ C2Þ þ A2
r C2RdIi;

a1 ¼ brðRi þ RdÞðC1 þ C2Þ þ krC1C2RdRi þ krIiðC1 þ C2Þ þ A2
r Ii þ A2

r C2RdRi;

a0 ¼ krðRd þ RiÞðC1 þ C2Þ þ A2
r ðRd þ RiÞ; b2 ¼ C1C2RdIi;

b1 ¼ C1C2RdRi þ IiðC1 þ C2Þ; b0 ¼ ðRd þ RiÞðC1 þ C2Þ:

For a fixed decoupler mount, assuming Rd-N, the coefficients of K32 reduce to

a3 ¼ brC1C2Ii; a2 ¼ C1C2ðbrRi þ krIiÞ þ A2
r C2Ii;

a1 ¼ brðC1 þ C2Þ þ krC1C2Ri þ A2
r CrRi;

a0 ¼ krðC1 þ C2Þ þ Ar2; b2 ¼ C1C2Ii;

b1 ¼ C1C2Ri; b0 ¼ C1 þ C2: ð13g2hÞ

Assuming br=0 [5] and C2bC1, K32 can be simplified to a second/second order transfer function
for a free decoupler as suggested by Singh et al. [4] where g is the static stiffness:

K22ðsÞ ¼ g
#a2s2 þ #a1s þ 1

#b2s2 þ #b1s þ 1
; ð14aÞ

where

g ¼ kr þ
A2

r

C1 þ C2

� �
; #a2 ¼

Rd

Rd þ Ri

� �
A2

r

kr

þ C1

� �
Ii;

#a1 ¼
1

Rd þ Ri

� �
Ii þ RdRi

A2
r

kr

þ C1

� �� �
; #b2 ¼

1

Rd þ Ri

� �
ðIiRdC1Þ;

#b1 ¼
1

Rd þ Ri

� �
ðRdRiC1 þ IiÞ: ð14b2fÞ

Similarly, for the fixed decoupler case, the coefficients of K22 are reduced to the following, again
as suggested by Singh et al. [4]:

g ¼ kr þ
A2

r

C1 þ C2

� �
; #a2 ¼ Ii

A2
r

kr

þ C1

� �
;

#a1 ¼ Ri

A2
r

kr

þ C1

� �
; #b2 ¼ IiC1; #b1 ¼ RiC1: ð4g2jÞ
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4. Non-linear model

4.1. Formulation

Based on the lumped parameter model of Section 2, a non-linear simulation model in the Matlab/
Simulink environment [12] is developed. Except for the decoupler, non-linear components can be
modelled via continuous non-linear functions. Such continuous relationships are obtained either
experimentally or via mathematical descriptions of the physical processes. Some non-linearities can
be linearized provided the dynamic excursion range is small. This holds true for p2(t) because C2 is
very high and the associated dynamic excursions are close to the atmospheric pressure. Also, the top
pressure chamber exhibits an asymmetric non-linearity, but the stiffness in both regimes is treated as
linear with very different slopes and the transition at p1=pa is assumed to be continuous. In some
cases, the polynomial curve-fit is employed. The non-linear model is solved employing the fourth
order Runge–Kutta method with a fixed time step [12]. The total time to run the steady state
simulation model for a particular X and f of excitation is specified by 60T, where T=1/f is the
period of excitation. Of the 60T time span, the first 40T is used to overcome the starting transient
effects due to the numerical integration of non-linear equation. Data from the rest of the time (20T)
is used for time or frequency domain validation process. The free decoupler model consumes more
time due to the additional nonlinearity introduced by the decoupler mechanism.

4.2. Fixed decoupler model

A comparison of experimental results [13] between the fixed and free decoupler cases shows that
the non-linearity is caused mostly by the vacuum pressure created in the top chamber and the
decoupler switching action. The distortion of the sinusoidal pressure waveform because of
vacuum is dominant for both the fixed and free decoupler case. The elimination of decoupler
focuses the study on the formation of vacuum, which is still poorly understood. The initial
conditions for p1(t) and p2(t) are set as atmospheric pressure pa. Since the compliance of each
chamber is non-linear, at each time step, the operating pressure is used to estimate C1 and C2 from
the measured p–V curves. Each compliance (C1 or C2) is expressed as a polynomial function of
pressure (p1 or p2), as shown in Table 2. The dynamic pressures p1(t) and p2(t) calculated
throughout the simulation are gage pressures (above or below pa).

The simulink model of the inertia track sub-system is constructed based on Eq. (4). The Dp12

due to Ri element is utilized as a feedback loop to this system. The non-linear resistance Ri is
specified as a function of qi, as shown in Table 2. The initial condition for qi is zero since the
simulation is assumed to start from the static equilibrium condition. The transmitted force sub-
system calculates the components contributed by both rubber and fluid elements, as shown by
Eq. (3). The rubber stiffness kr and damping br are interpolated from measured data by employing
a look-up table, while p1 is calculated numerically from the top chamber sub-system.

4.3. Free decoupler model

In the free decoupler model, yet another sub-system associated with a free floating disk (Fig. 6)
is integrated in the mount model. The equation of motion for the decoupler gap is based on the
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equations derived for the dashpot model Eqs. (5a–b). The decoupler sub-system has to be enabled
or disabled depending whether the decoupler opens or closes. The states of the system such as ’xd

and xd have to be held or reset to zero whenever the decoupler closes. The initial condition for the
decoupler variable xd is set as dd (Fig. 6), depending on whether the disk has lower or higher
density then the surrounding fluid, which makes the decoupler ‘float’ (xd=dd) or ‘sink’ (xd=0).
The decoupler sub-system calculates the flow rate through the decoupler qd based on disk velocity
’xd ; as shown in Eq. (5b). When the decoupler closes, we assume that the flow takes place only
through the inertia track since the decoupler mechanism is designed so that qd=0, although small
amount of leakage may occur [9]. Such enable/disable signals control the decoupler switching
mechanism, thereby introducing the discontinuous non-linear characteristics in our model.

4.4. Comparison of alternate decoupler models

Three alternate approaches to model the decoupler mechanism have been previously employed.
First, Kim and Singh [5] utilize a kinematic switching analysis to predict the time events
corresponding to the decoupler opening and closing. This is done by calculating the fluid volume
transferred through the decoupler between the top and bottom chambers and compare them with
the regimes where the decoupler can freely float. Employing this method, a complicated analysis
of the decoupler motion can be avoided, while still achieving a good approximation. Second,
Colgate et al. [6] claimed that a squeeze film between the decoupler disk and orifice plates
produces a damping force against the disk movement. The squeeze film force is inversely
proportional to the cube of the decoupler gap. Linearization of the damping force was performed
by considering only the fundamental harmonics of its Fourier contents and neglecting higher
order harmonics. Third, Royston and Singh [14] modelled the compliance in the decoupler orifice
plate or the mechanical stops as a cubic (continuous) spring. The polynomial (continuous)
stiffness expression was chosen since it could be more easily handled than a piecewise linear
(clearance) model.

4.5. Decoupler switching mechanism

The decoupler is designed so that the mount can provide different operating conditions for
small or large excitation. In the small amplitude case, the decoupler of our example case is wide
open most of the time, while in the large amplitude response, the decoupler is partially open.
When the decoupler is open, q=qi+qd, but when it is closed, q=qi. Fig. 10 shows the typical
response corresponding to a large amplitude excitation; refer to Fig. 3 for the sign convention. To
better understand the phenomenon, the sequence of events is divided into five steps.

Step 1: For the given mount the decoupler floats. So, the disk is assumed to be at the top
(xd=dd) and the gap is closed, and hence qd=0 and q=qi.

Step 2: When p1>p2, the decoupler starts to move down (open) and as a result, the fluid flow
through the decoupler qd tries to equalize the p1 and p2, and oppose an increase in p1. Notice that
qi is still >0 although the disk is moving downward. This is due to the inertance effect of the
inertia track.

Step 3: The disk is at the bottom (xd=0) and the decoupler gap is closed (qd=0). Due to the
decreasing qi, p1 increases. Then qi changes direction, which causes p1 to decrease.
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Step 4: When p1op2, the disk starts to move up (gap is now open), and the p1 suddenly stops
varying until the decoupler is closed again.

Step 5: The decoupler disk is at the top, and as x(t) and qi move upward. Vacuum is now
generated. During this stage, p1op2 and p1opa. When x(t) changes direction, p1 again starts to
increase.

Steps 2–5 continue to repeat themselves. The decoupler equation of motion is then described as

.xd ðtÞ ¼

Ad ½p2ðtÞ � p1ðtÞ�
md

�
bv ’xdðtÞ

md

for 0oxdðtÞodd ;

0; ’xdðtÞ ¼ 0 when xdðtÞ ¼ 0 and xd ðtÞ ¼ dd :

8<
: ð15Þ

In measured results, high frequency fluctuations are observed at those times when the decoupler
is open (steps 2 and 4). Some of these phenomenons are also captured by our simulation even at
low excitation frequency.

4.6. Decoupler damping model

The damping associated with decoupler is difficult to estimate experimentally as it would
require the measurement of transient flow. Steady state experimental results (based on loss angle
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spectra) do, however, show high damping in the decoupler. Colgate et al. [6] suggested that the
squeeze film damping force Fs opposes the decoupler when it is about to close. Assuming that
there is no opening in the decoupler plate, Fs is defined as [15]

Fs ¼ bs ’xd ; bs ¼
3mrd

2D3
; ð16a2bÞ

where m, rd, and D denote, respectively, the viscosity of water, decoupler radius, and the remaining
gap between decoupler and top (or bottom) orifice plate as the disk is about to close at the top (or
bottom). For our case, D=dd�xd when ’xd > 0; and D=xd when ’xdo0: Note that since Fs is
inversely proportional to D3, the squeeze film force will therefore increase very rapidly as the
decoupler is bottoming out. Assuming a linear velocity profile, steady flow, and constant m, the
viscous damping force Fv due to the shear stresses acting on the side of the decoupler can be
defined as [16]

Fv ¼ bv ’xd ; bv ¼
mAv

c
; ð17Þ

where c is the clearance gap between decoupler and orifice plate, and Av is the viscous force area.
Fig. 11 compares the squeeze film and viscous damping coefficients as a function of the remaining
decoupler gap D. Observe that bv is very small, of the order of 10�2N s/m, while bs ranges from N

to 10
 Ns/m. The damping introduced in the decoupler system is from the oscillatory motion of
the decoupler inside the cage. The mechanism for damping appears to be a combination of
squeeze film and viscous damping elements. Sample calculations, as shown in Fig. 11, yield vastly
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different values of bs and bv. Therefore, we define an equivalent viscous damping coefficient
bve=100N s/m based on parametric studies. This model worked extremely well without creating
any numerical problems introduced by the squeeze film formulation, especially when D is very
small.

5. Experimental methodology

5.1. Bench experiments

Bench experiments are constructed to study the non-linear characteristics of C1, C2, and Ri. The
objectives of these experiments is to determine whether the non-linear characteristics can be
modeled by simplified theoretical expressions. Alternatively, empirical results must be
incorporated in simulation. Refs. [2,13] discuss these in more detail.

5.2. Steady state experiments

Sinusoidal dynamic tests have been done using the MTS (model 831.50, 1000Hz) elastomer test
system [11]. Two configurations of the take-apart mount are used for study: (a) free decoupler
mount (with both decoupler and inertia track) and (b) fixed decoupler mount (without any
decoupler). The take-apart mount is assembled in a water bath so as not to include any air. The
assembly is done with a clamping fixture. Care has to be taken that there are no bubbles in the
water bath, which can be trapped during the assembly of the mount. For maintaining a low level
of dissolved air, the water temperature should be kept low.

The internal dynamics is studied by installing a pressure transducer in the top chamber and
measuring the dynamic p1(t). This can accurately map the dynamic stages of the decoupler as the
p1(t) waveform gives a very good understanding of the internal dynamics. Two kinds of pressure
transducer were used for experimentation: (a) absolute pressure transducer (strain gage), and (b)
dynamic pressure transducer (piezoelectric). The absolute pressure transducer is primarily used
for recording the mean %p1 level, while the dynamic pressure transducer is used for accurately
recording p1(t). Under the static manual control of the MTS controller, the mount was subjected
to varying loads and %p1 was recorded. This gave an estimate of the initial pressure to be used for
simulation. Dynamic characterization experiments were conducted at X=0.15, 0.25, 0.5, 0.75, 1.0,
1.25, and 1.5mm over 2.5–50Hz. Both frequency and time domain results were analyzed for two
mount configurations (with and without decoupler). Theoretical results match well with
experimental results (Fig. 12). Time domain results from the fixed decoupler (only inertia track)
case permit an examination of vacuum formation under certain conditions of excitation amplitude
and frequency.

5.3. Transient response experiments

A transient displacement input x(t) was applied to the mount using the MTS system. The
servohydraulic system was programmed in the displacement control mode for applying a
single ‘rectangular’ (step up and step down), triangular and sawtooth waveforms. All such
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excitations were applied over a mean displacement input xm corresponding to an Fm of about
1200N. The top chamber pressure p1ðtÞ; transmitted force Ft(t), and displacement excitation x(t)
signals were acquired and processed using the digital system that is independent of the MTS
machine.
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6. Results of linear model

6.1. Transfer function curve-fits

Measured dynamic stiffness data for both fixed (Rd-N) and free (finite Rd) decoupler mounts
are curve fitted, and compared with theory of Section 3. For the case of the fixed decoupler
mount, Fig. 13 shows that the K32(s) model (Eq. (13)) fits the measured stiffness magnitude K and
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phase f spectra very well. Conversely, the K22(s) model (Eq. (14)) predicts K very well, but not f,
especially at large X. For the free decoupler mount (Fig. 14), the K22(s) model can only predict the
small amplitude response (X=0.15mm), but an excellent match is obtained with the K32(s) model.
At higher X (0.5, 1.0, and 1.5mm), frequencies that yield maximum K and f maximum are
predicted to be much lower with the K22(s) model than those observed in measured results.
Overall, we can see that the K32(s) model gives better curve fits and is able to predict measured
data for different X and f. However, the K22(s) model is reasonable at certain X values.
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6.2. Transient response

Although the transfer function models of Section 3 are constructed for frequency domain
analysis purposes, it is interesting to observe the time domain response. Step and pulse responses
of the K32(s) and K22(s) models (Eqs. (13) and (14)) are compared with measured results. Although
the linear model assumes that C1 is constant, this assumption is not valid as the formation of
vacuum induces an asymmetric stiffness characteristic. Therefore, a parametric study is conducted
to evaluate the effects of C1 on the transient response. Comparisons between simulation and
experiment are based on the overshoot, settling time, and natural frequency of the transmitted
force oscillations.
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The step response of Fig. 15 shows that the linear model matches best when the effective
C1e=2.0 C1, where C1 is the baseline nominal value. But the pulse response of Fig. 16 works well
when C1e=C1. In the step response, C1e is larger than C1 since a lot of vacuum is generated due to
high amplitude of excitation and a short transient duration of x(t). Conversely, in the pulse
response, C1e is about the same as C1 since x(t) is not as suddenly applied as the step input,
resulting in less vacuum generated. The effect of vacuum is also seen in the measured FT profile;
observe flat regime around the first overshoot. Fig. 17 shows that p1 is very low during this regime.
Therefore, in this case, the generation of vacuum adds some damping to the system, especially to
the first peak. For a pulse response, the formation of vacuum is less as can be seen from the lesser
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deformation of the p1 waveform as shown in Fig. 18. This is again due to a gradual increase in the
loading. In both step and pulse responses, K22(s) and K32(s) models predict almost the same
results.

7. Transient response using non-linear model

Although the frequency domain formulations seem to match very well with measurements, a
more important and yet difficult task in the model validation process is to compare the time
domain responses. In such cases, the non-linearities due to the vacuum and the decoupler
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mechanism can be clearly seen. Transient response simulations are conducted by applying
step and pulse displacement inputs corresponding to the experimental waveforms. For example,
Fig. 19 shows the measured waveforms corresponding to step up and down transients. The step-
up displacement of Fig. 20 or Fig. 22 is obtained by applying a 1200N (say B) compressive
preload, and then releasing it to 0N (say A); the procedure is reversed for step-down. The pulse
input is acquired by applying a preload B=1200N, releasing to A=0N in 0.1 s and compressing it
again to B in yet another 0.1 s.

For the step input (Figs. 20 and 22), measured FT and p1 show a faster decay than predicted
results. This might be caused by the unmodelled dynamics associated with the inertia track. The
period of the decaying oscillations is smaller for the simulation. This might due to the amplitude
and frequency dependence of C1. The vacuum formation reduces the expected overshoot for both
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simulation and experiment. An impulse input to the mount is difficult to experimentally achieve
and therefore a triangular waveform is used. There is a limit to the pulse width that can be
achieved by a servo-hydraulic test system. Further, a reduction in the pulse time makes it difficult
to achieve the peak amplitude. The triangular excitation subjects the mount to a gradual ramp
input (Figs. 21 and 23). The transmitted force FT(t) and top chamber pressure p1(t) from
simulation and experiment match very well although predictions show less damping and a slower
decay of oscillations. The forces transmitted by the mount for step up and step down
displacements are different. The FT(t) peak during the step up (B to A) is less than the force
transmitted during the step down (A to B) as shown in Fig. 19. This further strengthens our claim
that the mount behaves in an asymmetric manner. The role of vacuum formation is very dominant
in controlling such an asymmetric behavior.

For the free decoupler case, qi, qd, and xd time histories are plotted for a better understanding of
the inertia track dynamics and the decoupler switching mechanism. Fig. 22 shows that when
compared to the case of fixed decoupler (Fig. 20), the addition of a free decoupler results in
reduced oscillations. This suggests that the decoupler introduces damping to the system.
Decoupler action comes out very prominently in the simulated waveforms (Figs. 22 and 23) of p1

and FT. As the decoupler closes, p1 rises significantly as shown by the small ‘bumps’. The disk
displacement xd is also plotted to illustrate the sequencing mechanism. One final note regarding
the measured p1(t) histories is that p1 is measured using a dynamic transducer with a lower
frequency limit of 0.5Hz. Consequently, measured results show a very low frequency trend or
drift. Such trends are not obviously seen in simulations.
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8. Conclusion

Chief contribution of this article has been to develop a model that can predict mount response to
transient events experienced by an automotive engine. The step up or down and the pulse transients
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analyzed in this study represent typical loading profiles. This paper has successfully simulated such
conditions for the first time in terms of both experimental and analytical studies. Our analysis is
however limited to the lower frequencies (p50Hz) and accordingly several assumptions have been
made [4,10]. For instance, the damping of elastomeric element can be assumed to be negligible [5].
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(a) displacement excitation profile; (b) transmitted force; (c) upper chamber pressure; and (d) flow through inertia track.
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For determining the inertance of the inertia track one-dimensional flow is assumed. Also, for
estimating the resistance of inertia track a coefficient of discharge (with Cd=0.61) is assumed for
turbulent flow through an ideal sharp-edged orifice. The linear model of the decoupler is given by a

ARTICLE IN PRESS

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-4

-3

-2

-1

0

1

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-1000

-500

0

500

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-100

-50

0

50

100

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-5

0

5

x 10-4

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

Time 

(c)  

(d)  

(b)

(a)

(e)  

Fig. 22. Step response of the free decoupler mount. (a) Displacement excitation profile; (b) transmitted force: —,

simulation; - 	 - 	 , measured; (c) upper chamber pressure; key: —, simulation; - 	 - 	 , measured; (d) flow through; key: —,

inertia track; - 	 - 	 , decoupler; and (e) decoupler displacement.

H. Adiguna et al. / Journal of Sound and Vibration 268 (2003) 217–248 245



first order differential equation with equivalent viscous damping though it is a combination of
viscous and squeeze film damping elements. The compliant behavior of top chamber is assumed to
be defined by a bi-linear spring but the transition from one stiffness regime to another is continuous.
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Though this article reports new work on the transient response, we had to investigate the steady
state behavior as well. Linear model based on transfer functions shows the effect of key
parameters like the compliance of top chamber. The effect of vacuum formation on the overshoot
for a step input is also observed by comparing measured data with linear model results. From the
linear analysis, it is observed that the K32(s) transfer function, as given by Eq. (13), is capable of
accurately predicting the dynamic stiffness and loss angle. Additionally, a non-linear model has
been successfully developed that includes both continuous and discontinuous non-linear stiffness
and damping formulations. Extensive simulations have been conducted in comparing alternate
approaches to describe the decoupler mechanism. New dynamic experiments have also been
conducted given step and pulse (triangle) displacement profiles. A new switching model of the
decoupler based on an equivalent viscous damping mechanism concept is used and this
formulation matches well with transient measurements. The proposed simulation model can also
be integrated within a larger vehicle dynamic model.

Analysis of the steady state time domain data provides an estimation of the top chamber
compliance under vacuum conditions, leading to an asymmetric stiffness characteristic. Time
domain results for step input (up or down) also illustrate such all asymmetric behavior. This
phenomenon needs to be better understood and modelled in future studies. Finally, the
experimental procedure we have used could lead to a standard transient test and correlation
method with real-life events.
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